Lesson Plan

Name of Teacher	$:$	Lie Hui Min
Subject	$:$	Mathematics
Level / Stream	$:$ Sec 2 Express / Sec 3 Express	
Topic	$:$Applications of Trigonometry Lesson Duration	$: 90$ minutes (3 periods)

Prior Knowledge		Students are able to a) explain what trigonometric ratios of acute angles are, b) find the unknown sides in right-angled triangles, c) find the unknown angles in right-angled triangles, d) apply trigonometric ratios to solve problems in real-life contexts and e) perform basic* programming using Microsoft Block Editor.
Specific Instructional Objectives	:	At the end of the lesson, student will be able to a) identify the angle of elevation, b) use Microsoft Block Editor (http://microbit.org/code/) to create a simple code** to measure angle of elevation using a micro:bit and c) solve simple practical problems in two and three dimensions including those involving angles of elevation.
Lesson Approach / Pedagogy	:	Learning Experiences - Learning Mathematics is more than just learning concepts and skills. Equally important are the cognitive and metacognitive process skills. These processes are learned through carefully constructed experiences. - Students to have opportunities to discuss the use of trigonometric ratios in real life.
Teaching Resources	:	a) New Syllabus Mathematics Shinglee (Textbook) b) Micro:bit Website (http://microbit.org/code/) c) Mathematics Learning Experience Activity (Annex A) d) Teacher Micro:bit Guide (Annex B)

[^0]| Duration | Instructional Procedure | Pedagogical Consideration |
| :---: | :---: | :---: |
| 15 mins | Lesson Introduction
 - Teacher does a short recap on trigonometric ratio of acute angles.
 - Teacher shares the objectives of the lesson.
 At the end of the lesson, student will be able to
 a) identify the angle of elevation,
 b) use Microsoft Block Editor (http://microbit.org/code/) to create a simple code to measure angle of elevation using a micro:bit and
 c) solve simple practical problems in two and three dimensions including those involving angles of elevation.
 - Teacher issues Mathematics Learning Experience Worksheet (Annex A) to the students and explains to students the procedures of the activities so as to achieve the objectives of the lesson. | Recap on Prior Knowledge
 - The knowledge learners already have before they meet new information. Learners' understanding of a concept can be improved by activating their prior knowledge before learning new concepts. |

	- Students proceed to program their codes to measure angle of elevation using a micro:bit in pairs/groups. - Students who are more proficient in coding can be tasked to include additional features such as buzzers and LED bulbs in their codes. - Upon completion, students input their codes in the micro:bit that is ready for use.	Differentiated Instruction - Differentiated by Product (codes to include different features) for students whose readiness level is higher than others. - Assuming sufficient data of students has been collected prior to lesson.
Duration	Instructional Procedure	Pedagogical Consideration
30 mins	Lesson Development 2 - Students proceed to parade square for their Task 2. - Teacher briefs students on how to collect data such as using footsteps to measure distance. - Students proceeds to identify a school building / flag pole and use their micro:bit to read the respective angle of elevation. - Upon completion of data collection, students start to make calculations to estimate the height of the identified school building / flag pole.	Measurement of Real World Data - Students are given opportunities to collect, examine and make sense of real-life data.
Duration	Instructional Procedure	Pedagogical Consideration
15 mins	Lesson Closure - Students discuss their findings in pairs/groups and share their learning. Possible discussion points include a) the different codes each student creates, b) how to measure distance of D accurately, c) how to identify the angle of elevation, d) the reasons why the height of the building / flag pole may have slight differences for each set of calculations. - Teacher selects students to present their findings and facilitates the learning process. - Teacher issues homework to students for further consolidation of learning.	Consolidation of Learning - Learning is reinforced as students discuss and bring about each other's ideas together to form their own understanding.

Mathematics Learning Experience Activity
Applications of Trigonometry (Angle of Elevation)
Annex A
Name: \qquad ()

Date: \qquad
Class: Sec \qquad
Objective: To find the height of a school building / flag pole by measuring the angle of elevation with a micro:bit.

Tasks

When we look at an object that is higher than us, the angle that the line of sight makes with the horizontal is called the angle of elevation.

Task 1 (In the computer lab)

a) Access the website http://microbit.org/code/.
b) Click on Let's Code for Microsoft Block Editor.
c) Create a code to read angle of elevation using a micro:bit.
d) Input your code to your micro:bit.

Task 2 (At the Parade Square)

a) Find a school building / flag pole that can be observed from the parade square.
b) Measure the height, $d \mathrm{~m}$, of your micro:bit from the ground.
c) Measure the horizontal distance, $D \mathrm{~m}$, from the foot of the school building / flag pole to where the micro:bit is.
d) Read the angle of elevation from the micro:bit.
e) Estimate the height of the school building / flag pole from the readings.

Height of Micro:bit, $h \mathrm{~m}=$					
Number of Foot Steps	Horizontal Distance $\boldsymbol{D} \mathbf{m}$	Angle of Elevation θ	Working	Height of Building Pole	
20					
30					
40					
50					
60					

Greenview Secondary School

Teacher Micro:bit Guide
Annex B

Level 1A (Basic)		๑.micro:bit
Level 1B (Basic)		\odot microbit
Level 2A - Light (LED bulb)		© micro:bit C
$\begin{aligned} & \hline \text { Level 2B } \\ & \text { - Sound } \\ & \text { (Buzzer) } \end{aligned}$		๑.micro:bit

[^0]: * Students attended a 1-hour lesson on the user-interface of MBE prior to Math lesson
 ** Use of micro:bit to measure real world data
 Complexity of code depends on student's proficiency in programming

